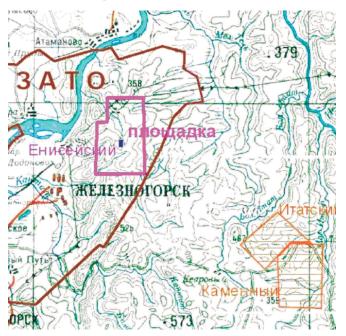
Опытно-демонстрационные центры по выводу из эксплуатации ядерно- и радиационно-опасных объектов России

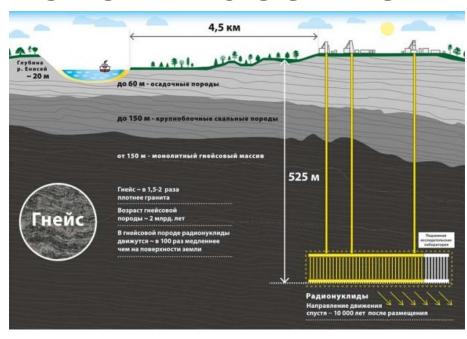
ПРОБЛЕМЫ ВЭ

- Вывод из эксплуатации:
- в мире 155 энергоблоков
- в России 5 энергоблоков
- Обращение с ОЯТ:
- в мире накоплено 243 тыс. т перерабатывается 4000 т/год ежегодная выгрузка 10,5 тыс. т
- в России накоплено 21,7 тыс. т перерабатывается 100 т/год ежегодная выгрузка 650 т
- Обращение с РАО:
- в мире накоплено ~1,2 млрд м³ РАО
- в России накоплено 486 млн м³ ЖРО и 87 млн т ТРО перерабатывается 2,2 млн м³/год ЖРО и 4 тыс.т/год ТРО ежегодно образуется 3 млн м³ ЖРО и 1,4 млн т ТРО

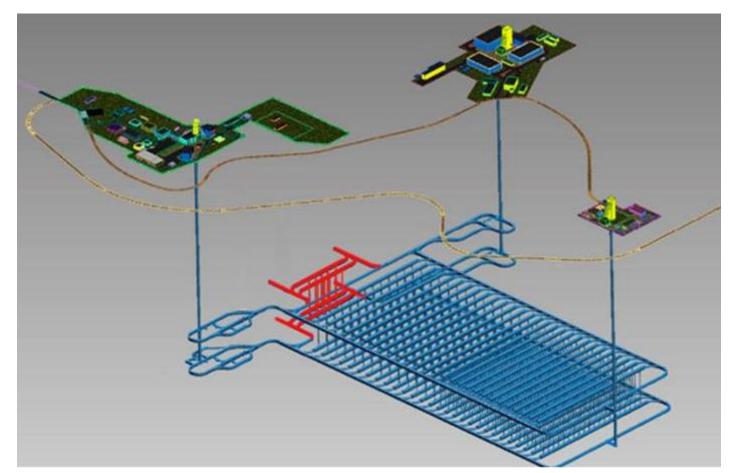
Федеральный комплекс по хранению и переработке ОЯТ

ОДЦ ПО ПЕРЕРАБОТКЕ ОЯТ


Класс отходов	Удельный объем по действующих технологиях, м³/тОЯТ	Удельный объем в ОДЦ, м³/тОЯТ
BAO	13	0,15
CAO	78	1,9
Жидкие НАО	1875	_


- отработка новых технологических схем переработки ОЯТ АЭС для создания крупномасштабного перерабатывающего завода;
- оптимизация схемы обращения с технологическими РАО, обеспечивающей перевод ВАО и долгоживущих САО в компактные формы для их безопасного хранения/захоронения и исключающей образование жидких НАО;
- разработка нового перспективного оборудования с для создания завода экономически эффективной производительности;
- оценка возможности переработки ОТВС с «проблемным» топливом;
- разработка новых компоновочных решений для создания завода нового поколения;
- режим работы ОДЦ 300 суток в год, производительность по базовой технологии 250 т ОЯТ в год (~ 2 ОТВС в сутки)

ПИЛ ЗАХОРОНЕНИЯ РАО


- ПИЛ обязательный первоначальный этап сооружения объекта окончательной изоляции РАО;
- ПИЛ создаются для:
 - уточняющих исследований изолирующих свойств и других характеристик вмещающего массива горных пород, подтверждающих его пригодность для безопасного захоронения ВАО и долгоживущих САО;
 - исследований и обоснования изолирующих свойств системы инженерных барьеров;
 - отработки технических решений и транспортно-технологических схем строительства и эксплуатации будущего объекта окончательной изоляции РАО
- Экспериментальные работы, проводимые в ПИЛ:
 - комплексные геофизические и лабораторные исследования физикохимических и фильтрационных характеристик массива пород;
 - отработка технологических операций создания инженерных барьеров;
 - отработка технологических операций по обращению с РАО;
 - демонстрацию безопасности всех операций при эксплуатации будущего объекта

ПИЛ в Нижнеканском массиве

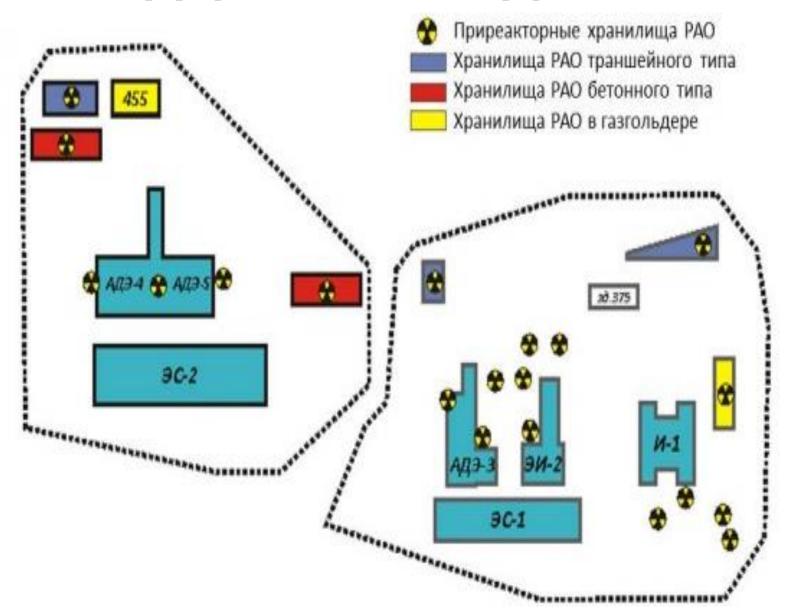
- на выделенной площадке пробурено 11 скважин (7 глубиной 600-700 м и 4 200 м);
- выполнен комплекс инженерно-геологических, геофизических, гидрогеологических и сейсмических исследований;
- участок признан соответствующим рекомендациям МАГАТЭ о пригодности для окончательной изоляции РАО и по изолирующим свойствам не уступает участкам в Швеции и Финляндии, где принято решение создать объекты подземного захоронения ОЯТ и ВАО;

- ПИЛ рассчитана на прием 6 тыс. м³ ВАО и долгоживущих САО с незначительным тепловыделением и 350 пеналов с остеклованными тепловыделяющими ВАО;
- При условии положительного заключения экспертизы о безопасности объекта может быть получено разрешение на его развитие в пункт глубинного захоронения ~155 тыс. м³ кондиционированных ВАО и долгоживущих САО с незначительным тепловыделением и ~7500 пеналов с остеклованными тепловыделяющими ВАО

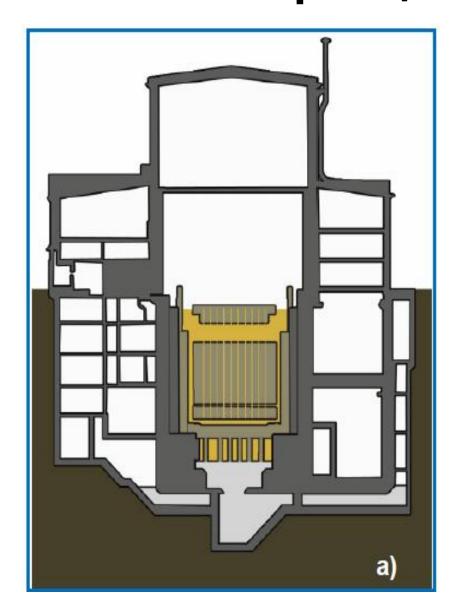
ПРОБЛЕМЫ ВЫВОДА УГР

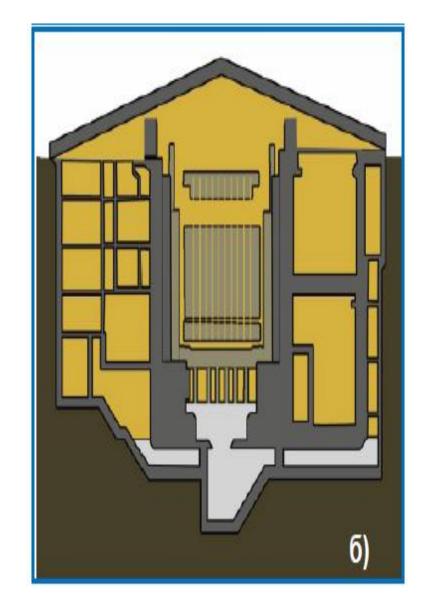
Всего в России УГР – 13 промышленных и 18 энергетических;

Основные проблемы ВЭ УГР:


- Отсутствие технических решений по их ВЭ;
- Особенности конструкции, размещения и эксплуатации;
- Потенциальная опасность облученного графита ввиду накопления в нем долгоживущих генетически значимых радионуклидов:

¹⁴С с периодом полураспада 5,73•10³ лет


³⁶CI с периодом полураспада 3,01•10⁵ лет


³Н с периодом полураспада 12,3 года

ОДЦ ПО ВЫВОДУ УГР

Преобразование ПУГР в пункт консервации особых РАО

ОДИЦ ПО ВЭ РЕАКТОРОВ ВВЭР

- Разработка и внедрение современных технологий, оборудования, установок для обеспечения эффективного ВЭ;
- Разработка и реализация проектов ВЭ на основе оптимальных, унифицированных проектно-конструкторских решений;
- Обеспечение безопасного ВЭ;
- Снижение затрат на ВЭ;
- Обеспечение эффективного планирования, управления, качества работ при ВЭ;
- Подготовка персонала для выполнения работ по ВЭ

ЗАКЛЮЧЕНИЕ

- Создание ОДЦ по всем аспектам завершающих стадий жизненного цикла ЯРОО обеспечили переход от поиска и реализации временных решений, обеспечивающих ядерную и радиационную безопасность в краткосрочной перспективе, к выработке решений, реализация которых обеспечит долгосрочную безопасность и окончательное решение;
- Наиболее важным мероприятием для решения проблем завершающих стадий жизненного цикла ЯРОО было создание ОДЦ по обращению с ОЯТ;
- Деятельность ОДЦ УГР решит проблему ядерного наследия по ВЭ реакторов наработчиков плутония и позволит разработать технологии ВЭ энергетических УГР;
- Деятельность ОДИЦ обеспечит разработку технологий по ВЭ наиболее распространенного типа реакторов

СПАСИБО ЗА ВНИМАНИЕ!